Investigation of Urbanization Effects on Land Surface Phenology in Northeast China during 2001-2015
نویسندگان
چکیده
The urbanization effects on land surface phenology (LSP) have been investigated by many studies, but few studies focused on the temporal variations of urbanization effects on LSP. In this study, we used the MODIS EVI, MODIS LST data and China’s Land Use/Cover Datasets (CLUDs) to investigate the temporal variations of urban heat island intensity and urbanization effects on LSP in Northeast China during 2001–2015. Land surface temperature (LST) and phenology differences between urban and rural areas represented the urban heat island intensity and urbanization effects on LSP, respectively. Mann-kendall nonparametric test and Sen's slope were used to evaluating the trends of urbanization effects on LSP and urban heat island intensity. The results indicated that the average land surface phenology (LSP) during 2001–2015 was characterized by high spatial heterogeneity. The start of the growing season (SOS) in old urban area had become earlier and earlier than rural area and the differences of SOS between urbanized area and the rural area changed greatly during 2001–2015 (−0.79 days/year, p < 0.01). Meanwhile, the length of the growing season (LOS) in urban and adjacent areas had become increasingly longer than rural area especially in urbanized area (0.92 days/year, p < 0.01), but the differences of the end of the growing season (EOS) between urban and adjacent areas did not change significantly. Next, the UHII increased in spring and autumn during the whole study period. Moreover, the correlation analysis indicated that the increasing urban heat island intensity in spring contributed greatly to the increases of urbanization effects on SOS, but the increasing urban heat island intensity in autumn did not lead to the increases of urbanization effects on EOS in Northeast China.
منابع مشابه
The Variations of Land Surface Phenology in Northeast China and Its Responses to Climate Change from 1982 to 2013
Northeast China is located at high northern latitudes and is a typical region of relatively high sensitivity to global climate change. Studies of the land surface phenology in Northeast China and its response to climate change are important for understanding global climate change. In this study, the land surface phenology parameters were calculated using the third generation dataset from the Gl...
متن کاملImpacts of urbanization on net primary productivity in the Pearl River Delta, China
Great changes in land use/land cover from rapid urbanization have occurred in the PearlRiver Delta, China. As the primary cause of land development in the urbanization process,urban expansion has mostly occurred on land with higher NPP, significantly impacting theregional ecosystems. The primary purpose of this study was to reveal the impacts of urbanexpansion on the regional NPP. The land cove...
متن کاملEffects of the land use change on ecosystem service value
The impacts of land utilization change on the ecosystem service values in Daqing during 1995 to 2015 were analyzed based on unit area ecosystem service value of Chinese territorial ecosystem from Mr. Xie Gaodi and ecosystem service value calculation formula from Costanza. Results showed that the ecosystem service value of Daqing decreased from US $4343.1559m in 1995 to US $3824.327m in 2015, wi...
متن کاملLand use impacts on surface water quality by statistical approaches
Surface waters are the most important economic resource for humans which provide water for agricultural, industrial and anthropogenic activities. Surface water quality plays vital role in protecting aquatic ecosystems. Unplanned urbanization, intense agricultural activities and deforestation are positively associated with carbon, nitrogen and phosphorous related water quality parameters. Multip...
متن کاملContrasting effects of urbanization and agriculture on surface temperature in eastern China
The combined effect of urbanization and agriculture, two most pervasive land use activities, on the surface climate remains poorly understood. Using Moderate Resolution Imaging Spectroradiometer data over 2010–2015 and forests as reference, we showed that urbanization warmed the land surface temperature (LST), especially during the daytime and in growing seasons (maximized at 5.0 ± 2.0°C in May...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Remote Sensing
دوره 9 شماره
صفحات -
تاریخ انتشار 2017